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The problem of parameter inversion in an inhomogeneous medium was studied and a
generalized ray approximation method to inverse the 2-D medium parameters is introduced
in this paper. By using referential and perturbational variables, the medium parameters of
the wave equation have been rewritten. By using the Green function theory, the integral
equation of perturbational parameters was obtained. Based on the local principles of wave
function and ray theory in inhomogeneous medium, a generalized ray approximation form
of the total wave field is introduced. By defining the medium parameters function, attention
has been focused on the Fredholm integral equation of the first kind. By using convolution
transforms, the solution of the medium parameters function in 2-D medium was obtained.
The perturbations of medium parameters are usually not greater than 20% in the Born
weak scattering method. However, in this paper the numerical results show that when the
perturbations of the medium parameters are within 50%, this method can effectively inverse
its variation.
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1. INTRODUCTION

The Born weak scattering approximate theory provides a useful tool to inverse medium
parameters in an inhomogeneous medium [1, 2]. This method has the advantage of
simplicity in that the total wave field can be replaced by the incident wave field. This
assumption requires that the variations of the value of medium parameters must be
small enough. By using this method, the inversion of medium parameters is obtained
for a case in which the variations of the value of medium parameters are not beyond
20 percent [3].

However, Born weak scattering method cannot be adequately used in the case where
the parameter variations are beyond 20%. This ‘‘smallness’’ limitation is too restricted and
many real conditions cannot satisfy the requirement of the assumption. In this paper, an
approximate solution to the inverse problem of 2-D medium parameters is presented. It
is assumed here that the density and velocity of the medium vary only in two dimensions,
vertically and laterally. A harmonic concentrated source is set off and the scattering signals
are observed in the surface. In the Born weak scattering method, the total wave field in
the medium is assumed equivalent to the incident wave field because the scattering wave
field is weak. In this paper, this assumption has been discarded and the general scattering
inverse problem has been studied. According to a certain incident wave field, the
generalized ray approximation form was introduced to the total wave field. This form is
derived from the local principles of wave function in an inhomogeneous medium [4] and
the ray theory of the forward problem [5]. By introducing amplitude modification and
phase delay, the inverse problem is focused on the Fredholm integral equation of the first
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kind of the medium parameters function which is defined in this paper. The parameters
inversion in a 1-D medium was described in paper [6] and the stratified technique was
adopted. However, integral transforms were used in this paper. The solution of the medium
parameters function of the laterally weak variant 2-D medium is obtained and a numerical
example is computed successfully.

2. INTEGRAL EQUATION

The elastic wave equation in an inhomogeneous medium is

1i (l 1kuk )+ 1j [m(1jui + 1iuj )]+ rFi = rüi , (1)

where l, m are the Lame’ coefficients of the medium, r is the density of the medium. ui

is the component of the displacement field, Fi is the component of the body force, 1i denotes
the partial derivative to the co-ordinate i, üi denotes the 2-D derivative with respect to time
t, and i, j=1, 2, 3.

By assuming zero viscosity, that is m=0(l=E), the transverse wave does not have to
be considered, and if the body force is ignored, also equation (1) can be rewritten as

(1/r) 1i (Eu)= üi , (2)

where u= 1iui . Applying 1i to both sides of equation (2) and taking i=1, 2, 3, respectively,
the equation is obtained as

div [(1/r) grad (Eu)]= u� . (3)

By defining f=−Eu, substituting it for Eu in equation (3), and using Fourier
transformation of t0v, equation (3) has been recast into the acoustic wave equation
in an inhomogeneous medium, that is

9 · ((1/r)9f)+ (v2/E)f=0, (4)

where f(r� ) is the total wave field in the medium, r� denotes the positional vector, v is the
circular frequency, and 9 is the 2-D gradient operator.

By using the referential variables r0 and E0 and the perturbational variables dr and the
dE, the medium parameters r and E are presented by

r= r0 + dr, E=E0 + dE, (5)

where the referential variables r0 and E0 are the value of medium parameters in
homogeneous medium. The dr and dE can be considered as the perturbational value of
the medium parameters. These non-dimensional variables can be defined as

a1 = dr/r, a2 = dE/E. (6)

Equation (4) can be changed into the Helmholtz equation

92f+ k2
0f=−d(r� )+9 · (a19f)+ k2

0a2f, (7)

where k0 is the wave number, and one has

k0 =v/n0, n0 =zE0/r0. (8)
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According to the Green’s function theory, equation (7) can be transformed into the integral
equation which is similar to the result in reference [3], i.e.,

f(s)(r� 0)=g dr� G(r� =r� 0)[9 · (a19f)+ k2
0a2f], (9)

where f(s)(r� 0) is the scattering wave field of the detecting point r� 0, G(r� =r� 0) is the Green’s
function of the homogeneous medium, and

G(r� =r� 0)= (i/4)H(1)
0 (k0 =r� − r� 0 =). (10)

In the 2-D medium dr� denotes the integral over the 2-D space filled with the medium.
It can be seen that the scattering wave field results from the inhomogeneity of the

medium parameters. The perturbations of the medium parameters can be regarded as the
sources function produced by the scattering wave field.

3. GENERALIZED RAY APPROXIMATION

The Born weak scattering approximate theory provides a useful tool to inverse medium
parameters in an inhomogeneous medium. Based on the small perturbational parameters
(=a1 =, =a2 =E20%) and the weak scattering assumption, f(s) is small enough to ignore, when
compared with f(i), that is, f=f(i) +f(s) 1f(i). However, when a1 and a2 are not small
enough (20%E =a1 =, =a2 =E50%), the assumption is not correct. Based on the analysis of
the local principles of wave function in an inhomogeneous medium, the following results
can be obtained [4].

(1) The inhomogeneity, measured by the square of the local wave speed gradient,
increased the amplitude of waves generated by a concentrated source of fixed strength.

(2) The inhomogeneity decreased spatial oscillation, that is, a medium with large
gradients of wave speed can be expected to have longer spatial wavelengths than a medium
that is more uniform.

According to the above results and forward results of the ray theory [5], amplitude
modification and phase delay are introduced. The form of the total wave field can be
assumed as:

f(r� )= (1+ a3)−1/2 exp [ik0(1+ a3)r], (11)

where r is the module of the vector r� and a3 is the variation of the value of the wave number
and

a3 = dk/k0 = (k− k0)/k0, (12)

where a1, a2 and a3 have the following relation

(1+ a3)2 = (1− a2)/(1− a1). (13)

Substituting equations (10) and (11) into equation (9), the integral equation is obtained

f(s)(r� 0)=g dr� H(1)
0 (s)a(r� ), (14)
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where

s= k0 =r� − r� 0 =. (15)

a(r� ) is defined as the medium parameters function in this paper. It has the form in the 2-D
medium of

a(r� )= (i/4) exp [ik0(1+ a3)r] · {k2
0 [a2(1+ a3)−1/2 − a1(1+ a3)3/2]

+ ik0(a1/r)(1+ a3)−1/2 + ik0(1/r)(1+ a3)1/2(r� · 9a1)

+ a1[ik0(1/r)(1+ a3)−1/2 −2k2
0 (1+ a3)1/2](r� · 9a3)

+ a1[3
4(1+ a3)−5/2 − k2

0r2(1+ a3)−1/2 − ik0r(1+ a3)−3/2](9a3 · 9a3)

+ [ik0r(1+ a3)−1/2 − 1
2(1+ a3)−3/2](9a1 · 9a3)

+ a1[ik0r(1+ a3)−1/2 − 1
2(1+ a3)−3/2](9 · 9a3)} (16)

Thus, the objective of inversion has concentrated on the solution of the Fredholm
integral equation of the first kind of the medium parameters function, where the Hankel
function can be considered as its core.

4. THE SOLUTION OF THE MEDIUM PARAMETERS FUNCTION

When the detection points are all located in the line z0 =0, equation (15) is simplified
to

s= k0z(x+ x0)2 + z2. (17)

The form of equation (14) allows construction of the x−D convolution. By using the
method described in reference [3], the solution of the medium parameters function can be
written as

a(x, z)=
1
p2 g

+a

−a

dk1 g
+a

−a

dk3 g
+a

−a

dx0k3f
(s)(x0) exp[2ik1(x− x0)−2ik3z]. (18)

By the use of stratified technology, the inversions of the longitudinal medium parameters
have been performed in reference [6]. However, there is lateral variation in real distribution
of underground medium parameters and the geophysical medium models are usually
laterally weak variants. The laterally weak variant medium models are more precise than
the longitudinal medium model in simulating the real distribution of underground medium
parameters. In this paper, the integral transforms are used to solve for the solution of the
medium parameters function and the solution is shown in equation (18). In the laterally
weak variant medium model, the laterally derivative terms are assumed small enough to
be ignored for the lateral variation is weak. The longitudinal medium parameters are
assumed to vary slowly, so the longitudinal two-rank derivative terms and the two-order
terms of the longitudinal derivative terms of medium parameters can be ignored. During
the inversion of the medium parameters the effect of these terms is small enough to be
ignored compared with the effect of the geodesic and the calculative errors. Therefore,
the medium parameters function is simplified and there are only the perturbational
terms and the longitudinally one-rank derivative terms in the medium parameters function,
that is

a(x, z)= (i/4) exp [ik0(1+ a3)r]{k2
0 [a2(1+ a3)−1/2 − a1(1+ a3)3/2]
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+ ik0z(1a1/1z)(1/r)(1+ a3)1/2 + a1z(1a3/1z)[ik0(1/r)(1+ a3)−1/2

−2k2
0 (1+ a3)1/2]}. (19)

Connecting with equations (13) and (19), the variations of the values of the medium
parameters can be decomposed.

To take account of a laterally weak variant medium model, the density model and
velocity model are shown in Figures 1 and 2, respectively. The values of the medium
parameters outside the grids take the referential variables. The dimensions of the grids are
80×80 m2 and 60×80 m2, respectively. The values of density and velocity are constant
in every grid for simplicity of calculation. During the inversion of the medium parameters
the referential variables take the values

r0 =1000 kg/m3, n0 =1500 m/s. (20)

The detective points are located along the line (z0 =0) beginning at the origin, and with
a 2 m interval. The total is 128, necessary for the precision of the integral transformation.
By using the detected information, that is, the scattering wave field, and using equations
(13) and (19), the values of the medium parameters are obtained. By using same grids of
the primal medium model and the inverse values of the medium parameters, the values
of every grid can be reconstructed. The reconstructed distributions of density and velocity
are shown in Figures 3 and 4, respectively.

5. CONCLUSION AND DISCUSSION

The linearized method was adopted for the Born weak scattering approximation and
the total wave field was replaced by the incident wave field. It is required that the
perturbations must vary within 20%. Compared with the Born weak scattering

Figure 1. Density distribution model. Figure 2. Velocity distribution model.

Figure 3. Reconstructed distribution Figure 4. Reconstructed distribution
of the density. of the velocity.
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approximation within 20% perturbation, the effect of the perturbational variations on the
total wave field is considered in the above-mentioned method. Therefore, this method can
obtain more precise results than the Born weak scattering approximation method with less
than 20% perturbation. Moreover, the objective of this new method is to inverse medium
parameters within 50% perturbation. In the numerical example, the perturbational values
of the density and the wave velocity are about 50%. From the inverse results it can be
shown that when the changes of the inhomogeneous medium parameters are large, the new
method presented in this paper can effectively inverse its variation.

It can be shown from reference [6] and the above-mentioned discussions that an effective
method which can inverse the inhomogeneous medium parameters has been proposed.
Based on the local principles of wave function in an inhomogeneous medium, amplitude
modification and phase delay have been introduced, and the effect of the perturbational
variations on the total wave fields is considered. By defining the medium parameters
function in this paper attention can be focused on its Fredholm integral equation of the
first kind. This makes the inverse problem more explicit in inverse objective. Nevertheless,
the new method fails to inverse the medium parameters the perturbational variations of
which are greater than 50%.
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